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A Fortuin-Kasteleyn cluster on a torus is said to be of type �a ,b� ,a ,b�Z, if it is possible to draw a curve
belonging to the cluster that winds a times around the first cycle of the torus as it winds −b times around the
second. Even though the Q-Potts models make sense only for Q integers, they can be included into a family of
models parametrized by �=�Q for which the Fortuin-Kasteleyn clusters can be defined for any real �
� �0,2�. For this family, we study the probability ���a ,b�� of a given type of clusters as a function of the torus
modular parameter �=�r+ i�i. We compute the asymptotic behavior of some of these probabilities as the torus
becomes infinitely thin. For example, the behavior of ���1,0�� is studied for �i→�. Exponents describing
these behaviors are defined and related to weights hr,s of the extended Kac table for r and s integers, but also
half-integers. Numerical simulations are also presented. Possible relationship with recent works and conformal
loop ensembles is discussed.
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I. INTRODUCTION

One of the main observables of two-dimensional percola-
tion is the crossing probability between two disjoint subsets
of the boundary of a domain. This domain is usually taken
homeomorphic to a disk. As Langlands and his colleagues
�1� were finishing their numerical study of universality and
conformal invariance of crossing probabilities, Gelfand sug-
gested to explore percolation on compact Riemann surfaces.
The simplest surface to study is the torus and the most natu-
ral observable is then the homologic properties of the perco-
lating cluster, or more precisely, the probability that a con-
figuration contains a homologically nontrivial cluster. �Since
these clusters are geometric objects, it might be easier to
think about their homotopic properties instead of their homo-
logical ones.� Let �1 and �2 be the two-dimensional linearly
independent vectors along the two sides of the parallelogram
defining the torus. In the following these will be identified to
points in the complex plane. If a nontrivial cluster exists and
if it winds a times along �1 of the torus while it wraps b
times along −�2, the cluster is said to be of type �a ,b�. All
other nontrivial clusters of that configuration, if any, will be
of the same type. �The integers a and b are coprimes. Types
�a ,b� and �−a ,−b� are considered identical.� For that reason,
the homology property of a configuration may be defined as
the type of its nontrivial clusters. If the configuration con-
tains no nontrivial cluster, it is said to be of type �0�. Finally,
if the configuration contains a cluster that has both a path
around the first cycle, that is along �1, and a path along �2,
this configuration is of type Z�Z. With that notation, each
configuration is associated with one of the subgroups H of
the homology group Z�Z of the torus: �0�, Z�Z, and �a ,b�

with a, b coprimes. The same notation �a ,b� is used for the
type of a configuration and the subgroup generated by an
element of that type. Langlands et al. measured the probabil-
ity of a few of these subgroups for percolation and gave
some numerical evidence for their conformal invariance.

Pinson �2� obtained analytic expressions for the probabil-
ity of these various subgroups as functions of the quotient �
of the fundamental periods �1, �2�C of the torus. His com-
putation relies on a clever argument giving an orientation to
the curves bounding clusters. �See �3,4�.� This is done in a
way that does not change the partition function, but does
allow for the identification of the homology properties of
intervening clusters. His computation is mathematically rig-
orous except for the step taking the limit as the mesh goes to
zero; for this, he used Nienhuis’ renormalization group argu-
ment �3� that ties the quantities under study to known results
for the Coulomb gas. A more rigorous treatment of this step
remains open.

Arguin �5� extended Pinson’s argument to Q-Potts mod-
els, Q=1,2 ,3 ,4. To do so, he considered the Fortuin-
Kasteleyn �FK� graphs or clusters of configurations. These
are the natural extensions of the clusters of percolation, the
Potts model with Q=1. Arguin showed that Pinson’s formu-
las need only a small change for the Q-Potts model with Q
�2. He also supported his new expression with numerical
data for the four integer values of Q.

Works on or using probabilities of homology subgroups
of FK clusters have not been limited to the theoretical pre-
dictions. Ziff et al. �6� were the first to provide numerical
support for their universality. Later Newman and Ziff �7�
used them to give a precise estimate of the critical probabil-
ity for site percolation on a square lattice. It was then the
most precise available estimate. Recently, they were again
used to obtain precise estimates for critical probability for
percolation on several lattices �8�. �These probabilities are
called wrapping probabilities in these works.�
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In the definition of Potts models, Q gives the number of
states accessible to the basic random variables, often called
spins. As such, Q must be an integer. When the partition
function is rewritten in terms of Fortuin-Kasteleyn graphs
�hereafter FK graphs�, the parameter Q appears in the Bolt-
zmann weight as QNc where Nc is the number of FK con-
nected components in the configuration. In this formulation,
the condition that Q be an integer may be relaxed. One then
gets a one-parameter family of models usually studied for the
values of Q in the interval �0,4�. It is between this family of
models and the family of stochastic Loewner processes that a
close tie seems to exist and has been established for some
particular cases. The stochastic Loewner equation with pa-
rameter � �SLE�� is believed to describe the growth of the
boundary of a FK graph. The exact relationship between the
two parameters Q and � is

Q = 4 cos24�

�
,

with �� �4,8� and, again, Q� �0,4�. Percolation corre-
sponds to �=6 �and Q=1� and the Ising model to �= 16

3 �Q
=2�. The mathematical tools to describe not only the bound-
ary of a single FK cluster but the set of loops described by
the boundary of all clusters in a configuration are now
emerging. Conformal loop ensembles �CLE�, defined by
Camia and Newman for percolation �9� and more generally
by Werner �10� �see also �11��, might allow for the rigorous
study of homological properties of configurations, as defined
and studied by Langlands et al., Pinson and Arguin.

The goal of the present paper is to extract from the known
expressions of the probabilities for the various homology
subgroups their asymptotic behavior for two limiting cases.
The first is when the quotient � of the periods goes to infinity
or to a real rational number. The second is when Q goes to
zero. The reason to study the latter is mostly curiosity. For
the former, the reason is twofold. Many results proved using
SLE techniques describe asymptotic behavior. The first rea-
son is therefore to seek exponents to describe limiting behav-
ior that might be easier to obtain with SLE �or CLE�. The
second reason is to probe deeper the relationship between
SLE and conformal field theory �CFT�. Several critical ex-
ponents appearing �rigorously� in the context of SLE had
been predicted within CFT and a large subset of these ap-
peared in the Kac table of the associated minimal conformal
model. It is agreed, but not proved, that SLE� describes prop-

erties of the conformal theory with central charge

c��� = 13 − 6��

4
+

4

�
	 .

Minimal models appear when c and � are rational. Let � be
rational and of the form 4p� / p with p�	 p�1, coprime in-
tegers. The conformal spectrum of the minimal model with
central charge c=c��� is constructed from the Virasoro high-
est weights

hr,s =
��r − 4s�2 − �� − 4�2

16�
,

1 
 r 
 p − 1, 1 
 s 
 p� − 1. �1�

It has been recognized, however, that the minimal models,
constructed out of finite sets of primary fields and therefore
of highest weights hr,s, are probably too restrictive and might
not capture all physical observables. Half-integers r and s
have been considered �12� and several works about logarith-
mic minimal models have shown that the upper bounds on r
and s need to be relaxed. �See, for example, recent works
exploring logarithmic models using free fields �13–15�, lat-
tice models �16–19�, and fusion �20–23�.� Maybe one of the
most striking examples of this fact is Cardy’s formula that
describes the probability of crossing within a rectangle for
percolation. For limiting geometries, that is, for rectangles
very wide or narrow, the probabilities approach 0 or 1 with
the power of h1,3= 1

3 , an exponent that does not belong to the
minimal set. Another example is related to the problem stud-
ied in the present note. In �24�, Arguin and Saint-Aubin
showed that, when the quotient � of the fundamental periods
of the torus tends to zero along the imaginary axis, the prob-
ability ���1,0�� for the Ising model goes to 1 as intuitively it
should, but more precisely it goes as ���1,0��→1
−q1/8f1�q�−q1/3f2�q�−¯ where q=e2i�� and f1 and f2 are
analytic in a neighborhood of q=0. The exponents are twice
the highest weights h1,2= 1

16 and h3,3= 1
6 ; the first belongs to

the spectrum of the minimal model, the second does not. It is
this observation that led us to ask whether exponents ob-
tained by taking limits of the geometry would always be in
the extended Kac table of the corresponding models when �
is rational. �Every conformal weight hr,s is repeated an infi-
nite number of times in the extended Kac table. Arguin and
Saint-Aubin chose �r ,s�= �1,2� and �3,3� for the leading ex-
ponents of the Ising model. We shall come back to this
choice after determining the exponents for the general case.�

Our notations are the following. The torus is identified
with the quotient C / ��1 ,�2� where ��1 ,�2� is the integral
lattice generated by �1, �2�C such that 0, �1, and �2 are
not colinear. We choose �1=1 and Im �2	0. Their quotient
�=�2 /�1 is the modulus of the torus with �i	0 and �r its
imaginary and real parts. Figure 1 shows these basic ele-
ments for a torus with �=− 2

3 + i. We follow the convention
set in �2,5� for the winding numbers: they are positive in the
direction of �1 and −�2. Figure 2 shows FK configurations
of three different types drawn on the torus �= i. Configura-
tion �c�, for example, is of type �2,−1� according to the
above convention.
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FIG. 1. The torus in the complex plane with �=−2 /3+ i.
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It is natural to break the partition function into sums over
configurations of a given type or generating a given sub-
group H. If a∧b denotes the greatest common divisor of a
and b �with a∧0=a for all a�, the partition function is

Z = Z��0�� + Z�Z � Z� + 

a∧b=1

Z��a,b�� . �2�

The observables under study are the probability of a given
subgroup H, namely, ��H�=Z�H� /Z. All these quantities de-
pend on the size of the lattice covering the torus and the
model labeled by Q. �For clarity we sometimes add an index,
Q or �, to quantities under study, e.g., Z=ZQ.� Their thermo-
dynamic limit, when the mesh size goes to zero, is known at
the critical temperature. The expressions obtained by Pinson
�2� for Q=1 and generalized by Arguin �5� for Q
� �1,2 ,3 ,4� are

Z��a,b�� = 

k�Z

Zbk,ak�g/4��cos��e0k� − cos��k�� , �3�

Z��0�� =
1

2 

m,m��Z

Zm,m��g/4�cos���m ∧ m��� , �4�

Z�Z � Z� = Q � Z��0�� , �5�

where

Zm,m��g� =
1

���q��2
� g

�i
e−�g�m� − m��2/�i �6�

and

Q = 4 cos2��e0/2�, g = 4 – 2e0, e0 = 2 – 8/� ,

Q � �0,4�, e0 � �0,1�, � � �4,8� . �7�

As said above ��H�=Z�H� /Z and therefore

���a,b�� = Z��a,b��/Z, ���0�� = Z��0��/Z

and ��Z � Z� = Z�Z � Z�/Z . �8�

The parameters Q, g, e0, and � are all in one-to-one corre-
spondence to one another in their respective range. �We use
them in the way historical developments have introduced
them.� Dedekind function is ��q�=q1/24�n�Z�1−qn�. Pin-
son’s and Arguin’s arguments extend trivially to the models
of Fortuin-Kasteleyn cluster with a real Q in the interval
�0,4�. We use these expressions as our starting point.

For percolation and the Ising model, closed forms for
these probabilities exist. Ziff et al. �6� gave, for percolation,
a compact form for ��=�i

�Z�Z� involving only Dedekind �
function and Jacobi 3 function. Moreover, they were able to
express ��=i�Z�Z� as a ratio involving only the integers 1,
2, and 3 and their roots. This is a singular feat. In his Mas-
ters’ thesis Arguin gave a closed form for ����a ,b��, for any
�, for both percolation and the Ising model. Again Dedekind
� and Jacobi 3 appear in his formulas for percolation. For
Ising, his closed form uses 2, 3, 4, and �. The special case
����1,0�� for Ising appeared in �24�.

The paper is organized as follows. In the next three sec-
tions, we study the following three limits: of ���1,0�� when
�i→�, of ���a ,b�� at �= c

d + i�i when �i→0, and finally of
��H� for any H�Z�Z when Q→0. The last section is de-
voted to Monte Carlo verifications of some of the results.

II. PROBABILITY �({1 ,0}) IN THE LIMIT �i\�

The first limit to be studied is when �i→�. It is easy to
visualize this limit when �r=0. It is then the limit when the
torus becomes a very thin ring. The corresponding parallelo-
gram in the complex plane becomes an infinitely tall rect-
angle of constant width equal to 1. Curves winding once
along �1 become very likely. In fact their relative length with
respect to those winding once in the direction �2 becomes
negligible and it is therefore expected that, in this limit, all
configurations will have curves of type �1,0� and none of
type �0,1�. In other words, ���1,0��→1 and the probability
of all other groups goes to 0. What should be the expected
behavior of ���1,0�� for finite but very large �i? Cardy’s
formula �25� provides a fair guess. This formula gives, for
percolation, the probability �h of horizontal crossing in a
rectangle of width H and height V as a function of the aspect
ratio r=V /H. For limiting geometries the probability be-
haves as

�h�r� →
r→0

c1e−�/3r and 1 − �h�r� →
r→�

c2e−�r/3

for known constants c1 and c2. Even though the intersections
of a percolating cluster with the left and right edges of the
rectangle might be in general at different height, these two
intersections are likely to have points with the same vertical
coordinates if the rectangle is very narrow, that is, when r
→0. Such a percolating cluster would be a FK cluster of
type �1,0�, if opposite edges of the rectangle would be glued
together. Therefore, one may expect the following behavior:

���1,0�� = 1 − 

n

cnq�n �9�

with positive exponents �n and the natural parameter q
=e−2��i when the real part of � vanishes. The natural gener-
alization for �r�0 is q=e2�i�, and

���1,0�� = 1 − 

n

cnq�nq̄�̄n, �10�

where �n and �̄n are again positive exponents. Note that both
q and q̄ go to 0 when �i→�. The goal of this section is to
determine the leading exponents �n and �̄n as a function of Q

(a) (b) (c)

FIG. 2. Examples of FK configurations of type �a� �0�, �b� Z
�Z, and �c� �2,−1� groups drawn on the torus with �= i.
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or, equivalently, e0. �Some care should be exercised as the
immediate extension of q to a � in the upper half-plane by
q=e2�i� does not coincide with the usual definition of the
nome of elliptic functions which is e�i�.�

The probability ���1,0�� is given in the form
ZQ��1,0�� /ZQ. The first step is to express the numerator and
denominator in a form suitable to extract these exponents.
From Eq. �3�:

ZQ��1,0�� = 

k�Z

Z0k,1k�g/4��cos��e0k� − cos��k��

=
1

���q��2
� g

4�i


k�Z

e−�gk2/4�i�cos��e0k� − cos��k�� .

To rewrite the e1/�i in terms of q, Poisson summation formula
will be necessary:



n�Z

e−�an2+bn =
1
�a



k�Z

e−�/a�k + b/2�i�2
. �11�

After expanding the cosines in terms of exponentials, Pois-
son formula gives

ZQ��1,0�� =
1

���q��2
k�Z
��qq̄��k + e0/2�2/g − �qq̄��k + 1/2�2/g� .

�12�

Since the function q−1/24��q� has a Taylor expansion, the
above form allows for the identification of the leading terms
in the numerator. Note, however, that the expansion of

���q��2 will not be used since this same factor appears in the
denominator.

The denominator

ZQ = �Q + 1�Z��0�� + 

a∧b=1

Z��a,b��

has two parts, which will be tackled separately. The partition
function restricted to configurations with only trivial clusters
is

ZQ��0�� =
1

2���q��2
� g

4�i



m,m��Z

e−�g�m2��i
2+�r

2�−2mm��r+m�2�/4�i

�cos���m ∧ m��� .

To get rid of the cos���m∧m���, we notice that



m,m��Z

= 

m,m��2Z

+ � 

m,m��Z

− 

m,m��2Z

	 . �13�

In the first sum, both m and m� are even which makes m∧m�
even and cos���m∧m���=1. The other terms, in the paren-
theses, are terms for which either m or m� is odd, and
cos���m∧m���=−1. Therefore,

ZQ��0�� =
1

2���q��2
� g

4�i

��2 

m,m��2Z

− 

m,m��Z

	e−�g�m2��i
2+�r

2�−2mm��r+m�2�/4�i.

Sums over multiples of an integer f �N will appear often
and it is useful to define

��f ,g� = f� g

4�i



m,m��fZ

e−�g�m2��i
2+�r

2�−2mm��r+m�2�/4�i

= f� g

4�i



m�Z
�e−�gf2m2��r

2+�i
2�/4�i 


m��Z

e−�gf2�m�2−2mm��r�/4�i	 = 

m,m��Z

qa
m,m�
+ �f ,g�q̄a

m,m�
− �f ,g�, �14�

where

am,m�
� �f ,g� =

1

g
�gfm

4
�

m�

f
	2

�15�

and Poisson formula �11� was used again in the last line of
Eq. �14�. The partition function ZQ��0�� is then

ZQ��0�� =
1

2���q��2
���2,g� − ��1,g��

=
1

2���q��2 

m,m��Z

�qa
m,m�
+ �2,g�q̄a

m,m�
− �2,g�

− qa
m,m�
+ �1,g�q̄a

m,m�
+ �1,g�� . �16�

The remaining term of ZQ, which includes configurations
with nontrivial FK clusters of type �a ,b� for all a and b
coprimes, is more complicated. The sum



a∧b=1

ZQ��a,b�� = 

m,m��Z

Zm,m��g/4��cos��e0�m ∧ m���

− cos���m ∧ m���� �17�

contains two terms. The second with cos���m∧m��� is ex-
actly twice the partition function ZQ��0�� just calculated. The
first with cos��e0�m∧m��� does not simplify as easily; the
sums must be reorganized before Eq. �11� is used. �For a
similar procedure, see �16�.� To do so, consider, for m fixed,
the function cos��e0�m∧m���. When m is nonzero, it is pe-
riodic in m� with period m. Therefore,
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m��Z

Zm,m��g/4�cos��e0�m ∧ m���

= 

d�m



m��dZ

C�d,e0�Zm,m��g/4�, m � 0 �18�

with

C�d,e0� = 

d2�d

cos�d2�e0��� d

d2
	 , �19�

where ��x� is the Möbius function of x. �Recall that ��1�
=1, ��n�=0 if n has repeated prime factors and ��n�
= �−1�� if n is the product of � distinct primes.� To get Eqs.
�18� and �19�, the sum over m� was divided into sums over
subsets which have the same value of cos��e0�m∧m���, in a
fashion similar to the splitting proposed in Eq. �13�. These
subsets are closely related to the divisors of m, therefore
leading to the splitting into sums over the multiples of these
divisors. We must stress, however, that the only divisors to
be considered in d �m are the positive ones. The remaining
sum can be written with the help of Eq. �18� as



m,m��Z

Zm,m��g/4�cos��e0�m ∧ m���

= 

m��Z

Z0,m��g/4�cos��e0m��

+ 

m�Z�



d�m



m��dZ

C�d,e0�Zm,m��g/4�

= 

m��Z

Z0,m��g/4�cos��e0m��

+ 

m�Z�



d�m



m��Z

C�d,e0�Zm,dm��g/4� ,

where Z�=Z \ �0�. In the above expression, the terms with
m=0 get a special treatment because of the particular defini-
tion of m∧m� when m is 0. These were already encountered
in the computation of ZQ��1,0�� and are equal to



m��Z

Z0,m��g/4�cos��e0m�� =
1

���q��2
k�Z
�qq̄��k + e0/2�2/g.

For the triple sum, the sum over divisors can be rearranged
using



m�Z�



d�m

h�m,d� = 

d�N�



m�dZ�

h�m,d� = 

m�Z�



d�N�

h�md,d�

and similarly for the sum of d2 �d in C�d ,e0�. These manipu-
lations have doubled the number of sums in Eq. �17� from
two, on m and m�, to four, on m, m�, d, and d2. This is the
price to pay to use Poisson formula on the sum over m� and
cast everything into powers of q. The result is



m�Z�,m��Z

Zm,m��g/4�cos��e0�m ∧ m���

= 

m�Z�



d�N�



m��Z

C�d,e0�Zdm,dm��g/4� �20�

=
1

���q��2 

m�Z�



d,d2�N�



m��Z

�
cos��e0d2���d�

dd2
qa

m,m�
+ �dd2,g�q̄a

m,m�
− �dd2,g�

�21�

and the complete partition function ZQ is

���q��2ZQ = 

k�Z

�qq̄��k + e0/2�2/g

+
�Q − 1�

2 

m,m��Z

�qa
m,m�
+ �2,g�q̄a

m,m�
− �2,g�

− qa
m,m�
+ �1,g�q̄a

m,m�
+ �1,g��

+ 

m�Z�

d,d2�N�

m��Z

cos��e0d2���d�
dd2

qa
m,m�
+ �dd2,g�q̄a

m,m�
− �dd2,g�,

�22�

where am,m�
� �f ,g� is given by Eq. �15�. The probability

���1,0�� is the quotient of ZQ��1,0�� given in Eq. �12� and
of ZQ.

It is now straightforward to see that the lowest-order term

is �qq̄�e0
2/4g for both the denominator ZQ and the numerator

ZQ��1,0�� and the leading term of ���1,0�� is therefore 1 as
claimed earlier. After simplification of this common factor,
an expansion can be done to obtain the whole sets of expo-
nents. An exhaustive list of possible exponents is given by
taking exponents in the numerator and in the denominator,
plus any integral linear combinations of them which arise
from higher order terms in the expansion. The possibility that
some of them could have vanishing coefficients is not ex-
cluded.

It is interesting to compare the leading exponents with
values �1� given by CFT in the Kac table �26�. In terms of g
and e0 they are

hr,s =
�r − �g/4�s�2 − e0

2/4
g

�23�

for r, s positive integers. Note that e0
2 /4g is exactly the

power of qq̄ that was subtracted to simplify the numerator
and denominator. The first exponents for ���1,0�� are given
by

CRITICAL EXPONENTS FOR THE HOMOLOGY OF… PHYSICAL REVIEW E 80, 021130 �2009�

021130-5



�1 = �̄1 =
1 − e0

2

8�2 − e0�
, �2 = �̄2 =

1 − e0

2�2 − e0�
. �24�

On the range of e0, �2	�1. The two exponents become
equal in the limit e0=1 �Q=0�; this particular case will be
studied in Sec. IV.

We now look for coincidences between these leading ex-
ponents � or higher ones and elements hr,s of the Kac table.
Such coincidences do occur. The simplest r and s giving �1

are r= 1
2 and s=0 and, those giving �2, r=0 and s=1. It is

somewhat unusual to choose vanishing s or r. Recall how-
ever that, for logarithmic minimal models, the Kac table is
extended and the periodicity of elements hr,s=hr+p,s+p� for
the model with �=4p� / p allows to choose r and s positive.
For some minimal models, it is however impossible to ac-
count for �1 with integers r and s. Half-integers must be
used. Arguin and Saint-Aubin �24� tied the two leading ex-
ponents for the Ising model to h1,2 and h3,3. Note that, when
either r or s is zero, then hr,s=h−r,−s. Moreover, if half-
integer indices are included, the periodicity property can be
refined to hr,s=hr+p/2,s+p�/2. The Ising model corresponds to
p=3 and p�=4 and their exponents are related to ours by
h1,2=h−1/2,0=h1/2,0 and h3,3=h0,−1=h0,1.

These two exponents �1 and �2 are related to the fractal
dimensions of geometric objects, namely, the mass and the
hull of a cluster, respectively. �See �27,28,12�. For an exten-
sion of these geometric objects to loop gas models, see �29�.�
In the FK formulation of the Q-Potts models, the FK cluster
mass attached to a site is the number of bonds in the com-
ponent of the FK graph containing this site. In the plane, the
hull of a FK cluster is the set of bonds that can be reached
from infinity without crossing any bond from the cluster. �On
a torus, each cluster has an inner and an outer hull.� Their
fractal dimension is 2−2� where � is h1/2,0 for the cluster
mass and h0,1 for the hull.

A natural explanation for h1/2,0 in the present context is
provided by Cardy �30� �see also �12��. Note first that the
only way to keep a configuration from having a cluster of
type �1,0� is to have a cluster in the vertical direction. It is
likely that its type will be �m ,1� for some m�Z or Z�Z.
Cardy gives an expression for the probability P�n ,k� of hav-
ing n clusters connecting the two extremities of a cylinder
whose length is k times the perimeter of its section. He finds
ln P�n ,k�− 2�

3 �n2− 1
4 �k if n�2. He points out that this ex-

pression evaluated at n=1 is not the probability of having a
single cluster between the two extremities, but it is the prob-
ability of having a single cluster between the extremities that
does not wind in the other direction. When all configurations

with a single cluster are considered, disregarding their be-
havior in the other direction, the probability is larger and
given by ln P�1,k�− 5�

24 k. Because e0= 2
3 for percolation,

our first correction term is �qq̄��1 =e−5��i/24, in agreement
with his result.

In a recent study of percolation, Ridout �31� has argued
that the primary field responsible for changing boundary
conditions in the computation of Watts’ formula should be
�2,5/2. This identification forces him to shift, in the extended
Kac table, the admissible values of s by 1

2 when r is even.
One would like to see a relationship with our identification
of �1 as h1/2,0. However it is r that takes a half-integer value
in our case, and s in his case. Moreover the value h1/2,0= 5

96
does not appear in his shifted extended Kac table.

The other exponents in the numerator of ���1,0�� are also
part of the extended Kac table. They appear with r=k+1, s

=1 for
2�k+e0/2�2−e0

2/4
g and r=k+1 /2, s=0 for

2�k+1/2�2−e0
2/4

g . From
ZQ��0��, the exponent am,m�

� �1,g� appears as s=m and r

= �m� and a��2,g�, as s=2m and r= �
m�
2 , again requiring

the Kac table to be extended to half-integer values of r.
However, not all the exponents of the denominator appear in
the extended Kac table, even if one allows half-integers r or
s. Indeed note that am,m�

� �dd2 ,g�−e0
2 /4g=hm�/dd2,�dd2m and

the first index of hr,s runs over all rationals. Could these
terms drop out of the sum because of cancellations?

This indeed occurs for Q=1,2 ,3 ,4. For these values that
correspond to e0= 2

3 , 1
2 , 1

3 ,0, it is possible to find a simpler
form for the denominator. For d	0 and these particular val-
ues of e0 and for e0=1, the function C�d ,e0� is particularly
simple:

C�d,0� = �d,1, �25�

C�d,
1

3
	 =

�d,1

2
− �d,2 −

3�d,3

2
+ 3�d,6, �26�

C�d,
1

2
	 = 2�d,4 − �d,2, �27�

C�d,
2

3
	 =

3�d,3

2
−

�d,1

2
, �28�

C�d,1� = 2�d,2 − �d,1. �29�

The proof of these formulas is given in the Appendix. The
contribution of 
m,m��ZZm,m��g /4�cos��e0�m∧m��� to ZQ is
then much simpler. It is

1

2 
 �qa
m,m�
+ �3,8/3�q̄a

m,m�
− �3,8/3� − qa

m,m�
+ �1,8/3�q̄a

m,m�
+ �1,8/3�� for Q = 1,

1

2 
 �qa
m,m�
+ �4,3�q̄a

m,m�
− �4,3� − qa

m,m�
+ �2,3�q̄a

m,m�
+ �2,3�� for Q = 2,
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1

2 
 �qa
m,m�
+ �6,10/3�q̄a

m,m�
− �6,10/3� − qa

m,m�
+ �3,10/3�q̄a

m,m�
+ �3,10/3� − qa

m,m�
+ �2,10/3�q̄a

m,m�
− �2,10/3� + qa

m,m�
+ �1,10/3�q̄a

m,m�
+ �1,10/3�� for Q = 3,

and


 �qa
m,m�
+ �1,4�q̄a

m,m�
− �1,4�� for Q = 4. �30�

All the sums above are on m, m��Z. It is then straightfor-

ward to show that, upon simplification of the factor �qq̄�e0
2/4g,

all these exponents can be found in the corresponding ex-
tended Kac table for some r and s integers in the range
�0, p�.

These examples show that the spurious am,m�
� �dd2 ,g� dis-

appear of the final sum for these special values of e0. Could
this happen for all e0? This is harder to assess as C�d ,e0� is
then an infinite sum and it is difficult to rewrite the partition
function in such a simple fashion.

III. PROBABILITIES �({a ,b}) IN THE
LIMIT �r=c Õd, �i\0

The probabilities ���a ,b��=����a ,b�� also have a limit,
either 0 or 1, when � approaches a rational number on the
real line. To see this let us consider the behavior of the prob-
ability ����2,−3�� close to �=− 2

3 . On Fig. 3 the lattice
spanned by �1= �1,0� and �2= �− 2

3 ,h� is drawn for h=1. The
torus is identified with the parallelogram circumscribed by
the thickest segments. Other parallelograms have been drawn
to help the eye. The corresponding � is simply − 2

3 + ih and we
are interested in the limit of ����2,−3�� when h→0. Note
that the segment from �0,3h� to �0,3h�+�1 is identified to
the basis of the torus. We have drawn in gray the boundary of
a FK cluster of type �2,−3� in this torus. �The fact that it is
a collection of straight segments makes this particular con-
figuration highly unlikely. We will see below that the shape
of this boundary is actually irrelevant.� To see that it is in-
deed of type �2,−3� we “unfold” the five gray segments into
a straight segment from � 1

2 ,0� to � 1
2 ,3h� shown also in gray

and we note that this line crosses twice the lines parallel to
�2 and three times those parallel to �1, before closing into a
loop. The limit �→− 2

3 amounts to h→0 or, equivalently, to
take the north-west vertex of the torus vertically to the real
axis, as indicated by the arrow. In this limit, the probability
of having a boundary of an FK cluster �of any shape� joining
two images of the same point of the torus as does the vertical
gray line is probably nonvanishing. Therefore the probability
����2,−3�� should converge to a number strictly larger than
0 as �→− 2

3 . This section shows that it actually goes to 1.
More generally ����p ,q��→1 when �→ p

q .
We have identified a torus with its modulus �, a complex

number in the upper half-plane H. As it is well known, this
correspondence is not unique, since any pair �1�=m�1+n�2
and �2�= p�1+q�2 with m, n, p, q�Z, and mq−np=1 de-
scribes the same torus, but with a new modulus ��=�2� /�1�.
The special linear transformations � q p

n m � with integer coeffi-

cients and determinant 1 form the modular group SL�2,Z�. It
is generated by two matrices

s = �0 − 1

1 0
	 and t = �1 1

0 1
	

whose action on � is

��
s

− 1/� and ��
t

� + 1. �31�

The probabilities ���0��=����0�� and ��Z�Z�=���Z�Z�
are invariant under the change in � by an element of
SL�2,Z�, but the probabilities ����a ,b�� are not. Arguin �5�
gave their transformation laws

����a,b�� = ��+1��a + b,b�� = �−1/���− b,a�� �32�

or, equivalently

����a,b�� = �g��g · �a,b��, g � SL�2,Z� , �33�

where ��g� denotes the action defined by Eq. �31� and
g · �a ,b� stands for the matrix multiplication g� a

b �. These
transformations follow immediately from form �3� of the par-
tition function ZQ��a ,b��.

A simple application of the modular transformation
gives ���0,1�� in terms of ���1,0��, namely, ����0,1��
=�−1/���1,0��. The result of the previous section implies eas-
ily that

�
5

3
�

2

3

1

3

4

3

1

2

3

FIG. 3. Curves of type �2,−3� become more likely as � ap-
proaches �− 2

3 + i0+.
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��=0+i�i
��0,1�� = ��=0+i/�i

��1,0�� = �ZQ��1,0��
ZQ

�
q�

,

where the partition functions are evaluated at q�=e−2�/�i. The
limiting behavior �i→0+ will therefore be characterized by
the same exponents obtained for ���1,0�� when �i→�.

Let g�SL�2,Z� and z�gz the associated map. It is con-
formal, one-to-one on H and maps the real line onto itself.
The image of the imaginary axis under such a map will
therefore be a circle intersecting the real axis at right angles.

Let �a ,b� be a pair of coprime integers. Then there are
integers p and q such that pa+qb=1. Therefore g= � a −q

b p �
�SL�2,Z�. The action of g on H maps a point �= i�i, �i
	0, on the positive imaginary axis into the point

i�i �
a

b
�1 − pq/ab�i

2

1 + p2/b2�i
2 	 +

i

�ib
2� 1

1 + p2/b2�i
2	 . �34�

The two parentheses behave as 1+O��i
−2� for �i→�. This

repeats the statement just made: the image of the positive
imaginary axis intersects the real line at right angles. The
two intersection points are the image of �=0 and i�. Note
that, even though the solution p, q of pa+qb=1 is not
unique, the form of g was chosen so that the image of �
= i� and the tangent at this point do not depend of the pair p,
q, but only on a, b.

For this particular element g�SL�2,Z�, the modular
transformation of the probability ����1,0�� gives

����1,0�� = ��a�−q�/�b�+p���a,b�� .

Because of Eq. �34� the behavior of ����1,0�� for �= i�i with
�i→� fixes the behavior of �����a ,b�� at ��=a /b+ i /�ib

2.
More precisely

��a/b�+i���a,b�� = 1 − 

n

cnq��n+�̄n�/b2
, with q = e−2�/�

�35�

with the same cn and �n as in Eq. �10�. Consequently all
others ���c ,d�� with �c ,d�� � �a ,b� should go to zero when
�→ a

b . To understand the behavior of these ���c ,d�� close to
�= a

b , consider Z��0,1�� in the limit �i→� and �r=0. A
simple calculation gives

Z��0,1��

=
1

���q��2
�g

4
�−

2�

ln q


k�Z

qgk2/8�cos��e0k� − cos��k�� .

�36�

When �i→� and therefore q→0, the leading term is

Z��0,1��  c
qg/8−1/12

�− ln q

for some constant c. This quantity still goes to zero �recall
that g� �2,4��, but it is not a power law due to the term
�−ln q. Because of Eq. �33�, a similar behavior will describe
���c ,d�� around �= a

b when c
d � a

b .
Ziff et al. �6� noticed that, for percolation, the probability

���Z�Z�, and therefore ����0��, develop oscillations as a

function �r when �i is close to zero. Their qualitative obser-
vation also holds for any Q� �0,4� and it is made quantita-
tive by Eq. �35�. Figure 4 draws for percolation the function
����0�� as a function of �r� �0, 1

2 � for �i=
1

200. �It is sufficient
to restrict the domain of �r to �0, 1

2 � as ����0��=��+1��0�� and
the function f��r�=��+�1/2���0�� is even for a fixed value of
�i.� The oscillatory behavior is obvious. Each valley of the
graph occurs when �r is a simple fraction a /b, for coprime
integers a and b and its depth is larger for b smaller, as
implied by Eq. �35�. Only the valleys with b
10 are labeled
on the figure but one can see the valleys to the right of �1,10�
corresponding to a

b = 1
11 , 1

12 , 1
13 and even 1

14. The fact that one
can see valleys for all a

b with b
14 can be explained as
follows.

Let a and b be coprime integers. Then there exist p and q
such that ap+bq=1. One can even choose p such that
−a /2� p
a /2. By the action of the matrix � −p −q

b −a �
�SL�2,Z�, the number �= a

b + i� is mapped on ��=−p /b
+ i /�b2. If �b2�1, this �� is in the fundamental domain of
the action of SL�2,Z� on the upper half-plane. �Our choice of
the fundamental domain is the usual one. See, for example,
�32�.� We have proved earlier that ���1,0�� goes to 1 expo-
nentially fast along the imaginary axis and, by Eq. �33�, this
behavior also holds for ���a ,b�� for �→ a

b . Because Im ��
	1 when b��−1/2, the value of ����0�� should be small for
all �= a

b + i� with such b. This bound on b is that observed on
Fig. 4 since 14��200�15.

Another remarkable feature of the graph of ���0�� is that,
between two valleys at �1=a1 /b1+ i� and �2=a2 /b2+ i� with
b1, b2��−1/2, the function bounces back to a value close to
��=i��0��=0.309 526. . ., the value obtained in closed form by
Ziff et al. �6�. The previous argument is not sufficient to
prove the latter fact. Because ���0�� is continuous, there
should be a neighborhood of �= i where its values remain
close to ����0��. A coarse numerical exploration shows that,
for example, ����0��� �0.3000,0.3161� for all � with �i

� � 4
5 , 5

4 �. �The maximum of ���0�� seems to be at the cusp
�=ei�/3 of the fundamental domain.� If there is a point �
between �1 and �2 on the line Im �=� that has an image by
the modular group in this window, then there will be a local
maximum close to this �, a mountain between the two val-
leys. Let us fix a window around �= i of the form Im �
� �ci ,cf� with ci�1�cf. �The above numerical exploration
shows that ci=

4
5 and cf =

5
4 could be good choices.� For these

ci and cf define

�0,1�

�1,10�

�1,9�

�1,8�

�1,7�

�1,6�

�1,5�

�2,9�

�1,4�

�2,7�

�3,10�

�1,3�

�3,8�

�2,5�

�3,7�

�4,9�

�1,2�

0 1�5 1�4 1�3 2�5 1�2
0

1�10

1�5

3�10

Re�Τ �

ΠΤ ��0��

FIG. 4. The function ����0�� for Q=1 as a function of �r for
�i=

1
200. The deepest valleys of the graph are labeled by the sub-

group �a ,b��Z�Z whose probability tends to 1 at �r=a /b.
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V� = ��a

b
�b 
 �cf��−1/2,1 
 a 
 b�

and

M� = ��a

b
��cf��−1/2 � b � �ci��−1/2,1 
 a 
 b� .

By the previous argument, ���0�� reaches local minima �val-
leys� close to ��V� and local maxima �mountains� close to
��M�. �Note that it is not necessary for a � to belong to M�

in order to be the location of a local maximum. The follow-
ing argument is therefore likely to underestimate the number
of possible local maxima.� The number of elements in V� and
M� can be counted using Euler function ��n� that gives the
number of positive integers 
n that are relatively prime to n.
For example, �V��=
1
b
1/�cf�

��b�. The sum 
1
n
N��n�
is known �to number theorists� to behave as 3 /�2N2

+O�N ln N�. Therefore,

�M��
�V��


cf

ci
− 1

for sufficiently small �. For the ci and cf suggested by the
numerical exploration, this ratio is 9

16 . Finally, the elements
of both sets V� and M� are scattered uniformly on �0,1�. More
precisely, for any interval I= �u ,v�� �0,1�, one has

�I � M��/�M�� = �v − u� + O��� ln ��

and similarly for �V��. Therefore, there will be many moun-
tains between contiguous elements of V� reaching a value
close to ��=i��0��=0.309 526. . .. The qualitative features of
the ���0�� just discussed should hold for other values of e0 as
they rest on the invariance of this probability under the
modular group. Of course the height of the mountains will
depend on e0.

IV. LIMIT Q\0

The last limit to be taken is not on the geometry, but on
the family of models. The partition functions ZQ on the torus
are well defined for Q� �0,4�. For models with Q in this
interval, the Boltzmann weight of any configuration is of the
form cQ#/2. The power # is the number l of closed loops for
configurations of type �0� and �a ,b� and l+2 for those of
type Z�Z. As Q goes to zero, the average of the number of
loops diminishes and configurations with a small number of
very long loops are favored. At Q=0, the set of configura-
tions is empty and, consequently, ZQ=0 and all the partial
partition functions ZQ=0��0��, ZQ=0�Z�Z�, and ZQ=0��a ,b��
vanish. One may ask what is the homotopy of these very
long loops for Q very close to zero. Our intuition failed us
here. This is why we explored this limit.

First note that, at Q=0, the expressions for the partition
functions do vanish since, for g=2 and e0=1, Z��a ,b��=0
and Z�0�=0 trivially from Eqs. �3� and �16�. This vanishing
turns out to be also valid for � away from the imaginary axis,
but we shall concentrate on the case �r=0 for the rest of this
section. The probabilities ��H�, H�Z�Z, are therefore the
quotient of two quantities that tend to zero when Q→0. We

first expand the partition function ZQ�H� around Q=0,

Z�H� = f0�H� + �f1�H� +
�2

2
f2�H� + ¯ ,

where � is a positive number such that

e0 = 1 − �, g = 2�1 + �� and Q = �2�2.

As pointed earlier, f0 vanishes for every subgroup H.
The coefficient f1 for �a ,b� vanishes. Indeed, � appears in

Eq. �3� only through g and e0 and the first derivative with
respect to either at �=0 is easily seen to be zero. The second
coefficient f2��a ,b�� does not vanish. The second derivative
may be computed by considering the variables g and e0 as
independent first and summing their variations after. Of the
three �2Z��a ,b�� /�g2, �2Z��a ,b�� /�g�e0, and �2Z��a ,b�� /
�e0

2, only the third is not zero. Using again Poisson formula,
we obtain

f2��a,b�� =
− 2��i

���q��2�b2�i
2 + a2�3/2

� 

k�Z+1/2

�1

2
−

2��ik
2

a2 + b2�i
2	qk2/�a2+b2�i

2�. �37�

Since ZQ�Z�Z�=QZQ��0���2�2ZQ��0�� around Q=0, the
probability ��Z�Z� can be ignored. The computation of
ZQ��0�� is shorter as its coefficient f1 is nonzero:

f1��0�� =
− 2��i

���q��2 

m,m��Z

�m2 −
m�2

4
	qm2+�m�2/4�.

Consequently, ���0�� is of order �0, ���a ,b�� of order �1, and
��Z�Z� of order �2. At leading order �, they are

���0��  1, ���Z � Z��  �2�2

and

���a,b��


�

2�a2 + b2�i
2�3/2


k�Z+1/2�1

2
−

2��ik
2

a2 + b2�i
2	qk2/�a2+b2�i

2�


m,m��Z �m2 −
m�2

4
	qm2+�m�2/4�

.

Even though loops are very long in typical configurations of
models with Q very small, they rarely succeed in winding
nontrivially around the torus. All sums in ���a ,b�� are re-
lated to elliptic theta functions and a compact form is

���a,b�� 
2�

�a2 + b2�i
2�3/2

1

2
2�q̂� − 2��iq̂2��q̂�/�a2 + b2�i

2�

4q3��q�3��4 q� − �4 q3���4 q�3�q�
,

where q̂=q1/�a2+b2�i
2�, 2�q�=2�4q
0
n��qn�n+1�, and 3�q�

=
n�Zqn2
.

V. MONTE CARLO SIMULATIONS

Two numerical verifications of the above results were
done using Monte Carlo simulations. The first supports the
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claim that Pinson and Arguin’s formulas hold for any Q’s in
the interval �0,4�, and not only for the integers. The second
measures the decay exponent �1 /b2=�1 /4 predicted for �1
−����1,2��� in the limit �= 1

2 + i0+.
Both sets of measurements were done on a family of loop

gas models labeled by Q that is known to describe the phys-
ics of the Q-Potts models when Q is an integer. On Fig. 5�a�,
an Ising configuration on a H�V=4�4 lattice with periodic
boundary conditions is drawn obliquely. A �broken� square
with rounded corners drawn at 45° indicates where the 4
�4 lattice is. Because of the tilt, it is useful to label each
spin by a number 1 to 16 to visualize where lie the repeated
spins on the boundary. This lattice describes a torus with �
= i. The basic variables of the loop gas model are the state of
the smaller boxes drawn also in Fig. 5�a�. The rectangle with
rounded corner that lies horizontally has h�v=8�4 such
boxes.

A Fortuin-Kasteleyn �FK� configuration, compatible with
the spin configuration, has been chosen in Fig. 5�b�. The FK
graph is indicated by diagonals in the smaller boxes. The
corresponding configuration of the loop gas is determined as
follows. Note first that two of the vertices of each box are
occupied by spins of the original lattice. If a FK bond is
drawn between them, the state of the box is built out of two
quarter circles drawn to avoid the bond. If no FK bond is
present, the two quarter circles are drawn as to prevent a
bond to appear. Note that the �loop gas� lattice of boxes h
�v= �2H��H has sheared boundary conditions: the vertex
in the bottom left is repeated in the middle of the top line.
This corresponds to �= 1

2 + i
2 . The modulus for the spin lattice

��= i� and that of the loop lattice ��= 1
2 + i

2 � are distinct, but
they lie in the same SL�2,Z� orbit. The Bolztmann distribu-
tion on the loop configuration is described in �18�. In �29� a
simple Metropolis upgrade step is described. The number of
steps sufficient for proper thermalization and the number of
steps between measurements to assure statistical indepen-
dence are also given there; they depend on the model, that is,
on Q.

A. Models with rational and irrational Q

We measured the probabilities ���0��, ��Z�Z�, ���1,0��,
���0,1��, ���1,1��, and ���1,−1��, for Q
� �1, �

�5−1
2 �2 ,2 , � 1+�5

2 �2�. The four values of Q correspond,
respectively, to percolation, the logarithmic minimal model
LM�3,5�, the Ising model, and the tricritical Ising model.
The two irrational values of Q test our claim that Eqs.
�3�–�5� apply to any Q� �0,4�. The cases Q=1 and 2 were
also measured by Arguin �5� using the “spin” models. �The
case Q=1 was first measured in �1�.� We do the measurement
here using the corresponding loop gas models described
summarily above. We chose to carry the simulation on a
square lattice h�h with �= i. To reduce finite-size effects,
the measurements were repeated for h=4, 8, 16, 32, 64, and
128 and the estimates �̂�H� were obtained by making a
power-law fit of the form

�̂�H� − �̂h�v�H� = C1�h � v�C2.

The results are reported in Table I where the 95%-confidence
interval is given in the form 0.1681 �4, that is

1 2 3 4 1

5 6 7 8

9 10 11 12 9

13 14 15 16

3 4 1 2 3

(a) (b)

FIG. 5. In �a� a 4�4 spin lattice with the corresponding loop gas lattice. In �b� an admissible Fortuin-Kasteleyn configuration with the
corresponding loop gas configuration.

TABLE I. Numerical and theoretical probabilities for six homotopy groups for the four models corre-
sponding to Q� �1, �

�5−1
2 �2 ,2 , � 1+�5

2 �2�.

Model �Q ���1,0�� ���0,1�� ���0�� ��Z�Z� ���1,1�� ���1,−1��

LM�3,5� 1
2 ��5−1� 0.1681 �4 0.1682 �4 0.4427 �5 0.1691 �4 0.0258 �2 0.0257 �2

0.1680 0.1680 0.4429 0.1692 0.0258 0.0258

Percolation 1 0.1693 �8 0.1697 �8 0.3094 �9 0.3094 �9 0.0211 �3 0.0211 �3
0.1694 0.1694 0.3095 0.3095 0.0210 0.0210

Ising �2 0.1466 �5 0.1464 �5 0.2259 �6 0.4528 �7 0.0141 �2 0.0141 �2
0.1464 0.1464 0.2264 0.4529 0.0139 0.0139

Tric. Ising 1
2 ��5+1� 0.1305 �7 0.1302 �7 0.1969 �8 0.5209 �10 0.0107 �2 0.0107 �2

0.1297 0.1297 0.1989 0.5207 0.0105 0.0105
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0.1681�0.0004. These are statistical errors. The agreement
is excellent. Some departure from theoretical values is seen
for the tricritical Ising model; this was to be expected as this
model is closest to the 4-Potts model that suffers logarithmic
corrections. Results for percolation and Ising agree with �5�.

B. Behavior of ��({1 ,2}) close to �= 1
2

We offer only one check of the asymptotic behavior of a
���H� on limiting geometries. But it is a nontrivial case,
����1,2��, since it probes the exponent �1 /b2 obtained in
Sec. III. This will be done for the model with Q= � 1

2 ��5
−1��2.

The relationship between spin and loop gas lattices de-
scribed earlier will play here a crucial role. For the value of
Q under study, there is a loop gas version, but no correspond-
ing spin model. We keep nonetheless the name “spin lattice”
for the lattice drawn obliquely in Fig. 5�a� and use capital
letters to give its size. �Note that the letter H is also used for
the subgroup of the holonomy group. Hopefully this will not
cause any confusion.� We aim at measuring various prob-
abilities ���H� for spin lattices of size H�V with V=20 and
H=V /�i for small �i, that is, for H�V. We choose H=20, 40,
60, 80, 120, 160, 320, 640, 960, and 1280. The correspond-
ing value of �=�r+ i�i are �r= 1

2 and 1 /�i=1, 2, 3, 4, 6, 8, 16,
32, 48, and 64. To account for �r= 1

2 , the bottom row of the
spin lattice has to be shifted to the right by C=H /2 sites
before being glued to the top row.

For these sizes of spin lattices, the corresponding loop
lattices have size h�v �with h and v in small letters� given
by

h =
2V lcm�C + V,H�

C + V
, v =

2HV

h
,

where lcm denotes the least common multiple. A shift c,
similar to C for the spin lattice, is necessary for the loop gas
lattice. This shift c is obtained by solving

��− V + C� + �H = c, ��V + C� + �H = v

for �, �, and c under the constraints �, �, c�Z, and c
� �0,h�. As an example, the loop lattice h=1280, v=20, and
c=620 corresponds to the spin lattice H=640, V=20, and
C=320. The samples are of 2�106 configurations for the six
smallest lattices and of 106 for the four largest.

The results appear in Table II. In all cases the agreement
for ���1,2�� is excellent, up to three or four digits. This is
remarkable considering that one of the lattice linear sizes is
very small. Indeed the six largest �loop� lattices have v=20
and finite-size effects should be present. It is also welcome
since the measurement of �1 requires to take the logarithm of
�1− �̂��1,2���. The slope on Fig. 6 should be 2��1 /b2 at
large 1 /�i. In the present case, b=2 and �1= 3

40 =0.075. Using
only the six largest lattices, we extract �̂1=0.0756�0.0005,
a reasonable agreement, as again the error does not include
finite-size effects.
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APPENDIX

We prove here the special values �Eqs. �25�–�29�� of the
function C�d ,e0�. Its definition is

C�d,e0� = 

d2�d

cos��e0d2���d/d2�

but, if the sum is done over d3=d /d2, it can also be written
as

= 

d3�d

cos��e0d/d3���d3� .

Because the cosine function is even and periodic, the func-
tion C�d ,e0� satisfies

C�d,e0� = C�d,− e0� = C�d,e0 + 2� .

The key relation for proving Eqs. �25�–�29� is

C�d,ke0� = C�kd,e0� + �k∧d,1C�d,e0�, for k prime.

�A1�

We first prove it.
By definition

C�d,e0� = 

d2�d

cos��e0

k

kd

d2
	��d2�

= 

d2�kd

cos��e0

k

kd

d2
	��d2� − 
� cos��e0

k

kd

d2
	��d2� .

By summing over all divisors of kd instead of those of d
only, the first sum of the second line has added terms; the
sum 
� is over these spurious terms and restores therefore
the equality with the previous line. Suppose k is prime. If d
has k among its prime factors, all the divisors d2 of kd that
are not divisors of d contain k2 as factors. Their Moebius
factor ��d2� is then 0 and the sum 
� vanishes. If k is not a

prime factor of d, then all d2 in the sum 
� are of the form
d2=kd3 with d3 a divisor of d. Then,


� cos��e0

k

kd

d2
	��d2� = 


d3�d
cos��e0

k

kd

kd3
	��kd3�

= − C�d,e0/k� .

We have thus proved

C�d,e0� = C�kd,e0/k� + �d∧k,1C�d,e0/k� . �A2�

Equation �A1� follows if e0 is replaced by ke0. Both forms
are useful.

The first identity in Eqs. �25�–�29� is almost trivial. But it
shows how to use Eq. �A2�. Suppose d has a repeated prime
factor, say d=k2d�. Then k∧ �kd��=k and the identity
Eq. �A2� gives C�kd� ,0�=C�k2d� ,0�+�k∧�kd��,1C�kd� ,0�
=C�d ,0�. The d’s to be studied are therefore those with only
distinct prime factors. Suppose that d�1 has l such factors.
In the definition of ��d2�, only the number of prime factors
is important and, if the sum over divisors is replaced by a
sum over the number of prime factors in these divisors,
C�d ,0� becomes

C�d,0� = 

d2�d

1 · ��d2� = 

i=0

l

�− 1�i� l

i
	 = �1 − 1�l = 0.

Finally C�1,0�=��1�=1, which proves Eq. �25�.
The last identity �29� is the next to be proven. The peri-

odicity of C simplifies its study. If k is an odd prime, then
C�d ,k�=C�d ,1�. For a given d, choose an odd prime k such
that k∧d=1. Then Eq. �A1� gives

C�d,1� = C�d,k� = C�dk,1� + C�d,1� ,

proving C�kd ,1�=0. This states that

C�d�,1� = 0 �A3�

if d� has a nonrepeated odd prime among its prime factors.
Like above, suppose that d has a repeated odd prime fac-

tor, d=k2d�. Then Eq. �A1� and periodicity give

C�d,1� = C�kd�,k� = C�kd�,1� .

Removing further factors k if necessary, one can bring these
cases back to Eq. �A3�. The only remaining cases are d, a
power of 2, and d=1. If d=2n, n�1, then Eq. �A1� and
periodicity give

C�2d,1� = C�d,2� = C�d,0� = �d,1 = 0.

A direct calculation gives C�2,1�=2 and C�1,1�=−1 prov-
ing Eq. �29�.

Let e0= 1
2 now. If d is odd, then all its divisors d2 will also

be and then cos��e0d2�=0 and C�d , 1
2 �=0. The periodicity

and evenness of C imply also that C�d , k
2 �=C�d , 1

2 � for k odd.
This allows us to use again Eq. �A1� efficiently. For k odd

C�d, 1
2 � = C�d, k

2 � = C�kd, 1
2 � + �k∧d,1C�d, 1

2 � .

10 20 30 40 50 60 70
������
1

Τi

�8

�6

�4

�2

ln�1�Π��2,1���

FIG. 6. �Color online� Numerical values for ���1,2�� are plotted,
with the theoretical curve and the linear fit obtained using the five
largest lattices. The sizes of the dots are larger than the statistical
errors.
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From this point on, the argument is similar to that for
C�d ,1�. The proof of the last two cases �e0= 1

3 and 2
3 � uses no

new argument and will be omitted.
These special cases might lead one to think that, for any

rational e0, the set �d�N� �C�d ,e0��0� is finite. This is

false. The cases e0=0 , 1
3 , 1

2 , 2
3 ,1 are exceptional in this sense.

It is intriguing to note that these values of e0 are precisely
those corresponding to the Potts models with Q
=4,3 ,2 ,1 ,0, respectively. �The limiting value Q=0 corre-
sponds to dense polymers.�
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